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Abstract

Artificial intelligence (AT) is one of today’s most powerful technologies. Having already transformed the business
world, AT may be poised to transform healthcare next. Current Al systems demonstrate impressive competency
in certain tasks of clinical medicine. Machine learning approaches to creating Al are of particular relevance
in healthcare, given the ability of modern machine learning algorithms to work with large amounts of complex
data and generate intelligent predictions therefrom. Here we propose that much of what physicians do can be
modelled as information processing and thus can be performed by AI. We further propose that whereas certain
AT systems may adopt approaches based on novel pattern extraction and interpretation, and thus diverge from
human physician cognition, Al is well-positioned to assist physicians by operating in parallel alongside them.
Navigating the intersection of physician and AI competence will be a tremendous and complex challenge, but
may return high rewards in improving patient outcomes and lead to transformative gains in medical knowledge.
Advances in Al will have tremendous and complex impact on the future of medicine.
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1. Introduction

Artificial intelligence (AI) may be the most transfor-
mative technology of the 215 century. Any non-human
machine system performing intelligent behaviour — be-
haviour that is proficient with respect to a complex
goal — falls under the rubric of AL.! Recent years
have brought tremendous advances in Al, with certain
AT systems now capable of human-level speech recog-
nition,?3 human-level language translation,* superhu-
man image recognition,® and superhuman performance
in numerous complex games such as poker, %7 Go,® and
Capture the Flag.?

Alongside development of enhanced capabilities, use
of and interest in Al is also growing. The 2018 AI In-
dex Report, prepared by the Human-Centered Al In-
stitute at Stanford University, documents manifold as-
pects of progress, including huge increase in the num-
ber of Al papers published per year, increased number
of AI startups and patents, and growing widespread
adoption of Al in industry.'® In some sectors, as of
2018, as many as 75% of companies had trialed AI or
were currently using Al for certain functions of their
business. '® Al is currently used by diverse collections
of companies in various industries including technol-
ogy (Google, Samsung, Apple), social media (Twitter,
Facebook, Instagram), entertainment media (Spotify,
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Netflix, Walt Disney), consumer goods (Amazon, Wal-
mart), food and beverage (e.g. Starbucks, Coca-Cola,
McDonald’s), transportation (Hopper, Uber), and au-
tomotive (Tesla, BMW, Volvo). 1!

In view of increasing capabilities of Al systems and
simultaneous transformative benefits of Al in diverse
industries, many have suggested that AI may next
transform healthcare.12:13:14:15.16 Specialized Al sys-
tems have already been deployed into healthcare in var-
ious regions worldwide. In the US, the FDA has already
approved specific Al algorithms for tasks including in-
terpretation of magnetic resonance (MR) and computed
tomography (CT) images of the brain, 7 heart, '® liver,
and lungs, !° with some degree of autonomy. 2%2! More-
over, the FDA is fast-tracking approval of further Al
algorithms.?? In Japan, IBM’s Watson now assists in
diagnosing leukemia via genome sequencing, with some
notable success, including possibly having saved lives. 23
In India, AT is widely used to interpret urgent ECGs
to rule out or diagnose myocardial infarctions?* and
to detect cervical cancer in pathologic samples.2% One
hospital in Guangzhou, China is using Al to suggest
diagnoses for hundreds of diseases, interpret computed
tomography (CT) scans, and organize patient files via
facial recognition.?® Meanwhile, software by Beijing-
based Al start-up, Infervision, assists with interpreta-
tion of CT scans in a majority of Chinese hospitals, as
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well as select additional hospitals outside of China.?”

In Europe, Google DeepMind is partnered with UK’s
National Health Service as of 2015, and has since been
receiving patient data for the purpose of developing Al
systems for healthcare.?® At St. Michael’s Hospital
in Toronto, Canada, the Vector Research Institute is
testing the application of Al to improve interpretations
of radiographic imaging studies?” and to predict when
hospitalized patients require transfer to the intensive
care unit.3% These initial examples form what is likely
just the beginning of Al’s involvement in healthcare.

Within the roles of clinical medicine, the competen-
cies of Al seem particularly well-suited to certain tasks,
such as image classification. Much has been discussed
about the possibility of Al replacing diagnostic radiolo-
gists.31:32:33:34 Notably, many of the above examples of
AT’s deployment into healthcare are in diagnostic imag-
ing. However, deployments for broader purposes have
already begun and are likely to continue. As we will
see, given extreme broadness of certain principles of Al
and of computation more generally, the growing com-
petency of Al applications may expand to cover exten-
sive aspects of clinical medicine. Recent research indi-
cates Al competence in diverse tasks such as predicting
treatment response to medications, 3% predicting car-
diovascular risk from routine laboratory data,?” and
diagnosing rheumatoid arthritis via automatic analysis
of patients’ electronic health records. 32

Given broad and increasing capabilities of medi-
cal Al, some have wondered if Al of the future could
render human physicians obsolete. Silicon Valley in-
vestor Vinod Khosla suggests that AT will replace 80%
of doctors, possibly even on the timescale of a couple
decades (written in 2012).3° Notably, an Al-powered
robot named Xiaoyi recently passed the Chinese med-
ical licensing exam.? Although it is possible that ad-
vanced future Al systems will someday usurp certain
roles of physicians, healthcare will first be faced with
increasing competency of Al in an increasing number of
medical applications, with specialized medical Al sys-
tems performing at levels of competency approaching,
equalizing, and/or ultimately surpassing the compe-
tency of human physicians. Thus, rather than focusing
attention on the possibility of physician replacement by
Al the more pressing question of today is “what should
the healthcare system do with Al systems that are as
good as or better than physicians?”

To adequately discuss these crucial matters, and to
be prepared for what future technological advances will
bring, physicians and healthcare policymakers must at-
tain a working knowledge of the possibilities of Al in
medicine. This will require some understanding of com-
putational principles. Despite increasing adoption rates
and ubiquity, Al and computers can be highly counter-
intuitive. For example, researchers at the University
of Wisconsin-Madison recently created an Al system
in a “nanophotonic medium” — essentially, a piece of
glass, with no electricity required for its operations —
that classified handwritten digits.*! Even within stan-
dard modern electronic computers, Al is a diverse and
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immense category, subsections of which may defy in-
tuitions. Thus, understanding AI’s conceptual under-
pinnings in terms of computer science and information
theory is prerequisite to understanding possible broad
futures of Al in medicine.

In this paper we discuss physical and philosophical
underpinnings of how Al systems may achieve compe-
tence in the complex goals of healthcare, noting certain
similarities between information processing performed
by AI and by human physicians. We also discuss cer-
tain capabilities of medically-focused Al systems, high-
lighting multi-faceted ways in which AI and physician
competence will intersect, and how this will benefit
patient outcomes and advance medical knowledge. To
make the most of the future, healthcare must place a
high priority on capturing value and mitigating risks of
ATl in the future of medicine.

2. Computation and artificial intelli-
gence: brief primer for a medical audi-
ence

This section describes fundamentals of computation
and Al in order to see how they may be relevant to
medicine. We will see that computers are physical
systems that store and transform information, and, no-
tably, how this abstract framework can map much of
what occurs in medicine. Transforming information in
certain ways earns a computational system the designa-
tion of “intelligence”, and machine learning approaches
are one effective route by which contemporary comput-
ing systems achieve intelligence. We will also discuss
certain advantages conferred by different types of Al
Readers familiar with computation and Al should ad-
vance to Section 3.

2.1 Information: modeling the world

A computer is a mechanical device that stores and
transforms information via physical processes. Thus,
the extent to which realms of medicine can be accessed
by computers and Al is wholly dependent on the extent
to which medicine can be modelled in terms of informa-
tion. We will consider information generally before ad-
vancing to specifically consider information in medicine
in Section 3.

Information has various technical definitions re-
lating to divergent subcultures in the philosophy
of information.*? For our purposes, a sufficiently
philosophically-neutral definition will be “what is con-
veyed or represented by a particular arrangement or
sequence of things”.4? For example, a geographic map
carries information about the physical environment of
earth, in that multicolored patterns of shapes and their
word-labels (the particular arrangement of things) con-
vey and represent the earth. In carrying information
about the earth (or a portion thereof), it can be said
that the map models the earth (or its portion thereof).
Whereas a map models the world via apparent phys-
ical likeness (e.g. water on a map may be coloured
blue, mountains may appear raised), other technologies
achieve modelling by means that are highly abstract.
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For example, certain modern technologies encode in-
formation via etching microscopic pits into CDs, mag-
netizing surface points on computer hard drives, and
using electrons to influence the charge of a capacitor. 44
Although it may be counterintuitive, these highly ab-
stract modes of instantiating information can render ex-
tremely faithful models of systems in the outside world.
A map stored on a CD or in a computer hard drive can
model the outside system of interest (in this case, a
particular geographic region) with the same arbitrary
closeness that can be achieved by a paper map (i.e.
bounded only by storage capacity, namely the size of
the paper or the size of the hard drive’s memory).

As another example of abstract information stor-
age, consider a photographic image. It can be stored
digitally on a smartphone device and represented in
solid-state storage (a type of computer memory that
uses electrical circuits and lacks moving parts), stored
on a desktop computer represented in hard disk drives
(a type of computer memory utilizing spinning elec-
tromagnetic rotating disks), or printed physically onto
a piece of paper and represented via molecules of ink.
Some “likeness” of the image, expressed via abstract
electrical, magnetic, and molecular patterns, is trans-
lated across mediums, despite distinct modes of phys-
ical instantiation. The information “has a life of its
own.” #* The ability of information to flow from model
to model in this way may appear peculiar, but informa-
tion itself (“that which is conveyed or represented”) is
substrate-independent, meaning that it does not change
according to the way in which it is stored.*> Another
interesting property of information is that there is no
apparent physical constraint on what can be repre-
sented by information.“% Thus, to model any system,
one need only possess information about that system,
and possess a means of instantiating that information
into a device such as a computer. As a result of these
properties, information stored in a computer can rep-
resent diverse and complex features of the world such
as images,*” earthquakes,*® and quasars.*’

2.2 Computation: transforming the model

Although all computers store information, this alone is
not sufficient to achieve their designation as computer.
A computer is a device that not only stores information
in memory, but utilizes functions to transform informa-
tion.%* Functions are mathematical equations that ac-
cept a set of data and output a paired set of data in one-
to-one correspondence. Essentially, information enters
a function, is acted upon by the function, and emerges
transformed. The particular transformation that oc-
curs is specified by the particular function. For exam-
ple, a function may transform its input information by a
two-fold factor of multiplication, as in the simple func-
tion “y = 2x”. But functions can also perform trans-
formations of much greater complexity. Physicist Max
Tegmark gives the further examples of a function trans-
forming input information that represents current po-
sitions of chess pieces on a chessboard into information
representing best next move for Black, or transforming
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information representing all the world’s financial data
into lucrative stock market purchases.** (Functions of
this kind illustrate, in outline, how a computational al-
gorithm can be “intelligent.” Section 2.3 considers this
in detail.) The process of implementing a series of arith-
metic functions alongside non-arithmetic functions to
retrieve an output set of data is called an algorithm.
The process of implementing such algorithms are called
computations; thus, circularly, a computer designates a
device that implements algorithms.

Like information, computation is also substrate-
independent. What matters for computation is the
transformation of information, not the physical sub-
strate that implements the transformation. Thus, a
wide variety of mechanical systems can function as com-
puters. This insight, in general form, appears to have
been first arrived at by Spanish polymath Ramon Llull
(deceased 1316), who realized that mechanical artifacts
could perform “useful reasoning”.! Thereafter, in the
1500-1700s, various simple devices were built to per-
form mathematical calculations.! Modern computers
use bits, simple two-state storage devices, to store and
transform information. Like a power switch, a single
bit can be off (represented as 0), or on (represented as
1), but not in-between. (“On” and “off” correspond
to mutually exclusive physical states, such as whether
electrical current flows through a given wire or not,
whether a given area is magnetized or not, etc.) With a
large enough number of bits stored in large and complex
arrays, any amount of information can be stored and
transformed in a computer’s memory,®° giving modern
computers tremendous reach.

Modern computing is generally agreed to have be-
gun with Alan Turing’s seminal 1936 paper, “On Com-
putable Numbers, with an Application to the Entschei-
dungs problem”, in which Turing demonstrates that if
a computer can perform a minimum set of basic op-
erations, then it is a wniversal computer, meaning it
can compute anything that any other computer can
compute. 51 Notabbly, modern electronic computers,
including smartphones and laptops, are universal.*
Given that a computer is simply a physical system that
transforms information, and given the possibility of in-
formation to represent any complex and interesting fea-
ture of the world, there is no obvious limit to the kinds
of interesting and useful transformations of information
that potential future computers can accomplish, other
than the limits imposed by the laws of physics them-
selves — i.e. laws regarding the kinds of systems that
can instantiate information and can perform a given
physical transformation, how fast a given transforma-
tion can be performed, etc.®? In creating universal com-
puters, humanity may have initiated what physicist

David Deutsch calls “a beginning of infinity” .46

To whatever extent the conceptual future of com-
putation is limitless, likewise, the application of com-
putation to solve problems in medicine may be cor-
respondingly limitless. The next section will discuss
specifically how certain computational systems achieve
“intelligence”.
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2.3 Intelligent computation in machines and in
medicine

How can a computer achieve intelligence? The answer
may be implied by the previous sections, but is worth
elaborating in further detail. Intelligence has no sin-
gle standard definition, but in regards to Al may be
thought of as proficiency with respect to a complex
goal.** (What exactly constitutes “complex” is itself
difficult to define. A working definition put forth by
biologist Richard Dawkins proposes that something is
complex if it has “some quality, specifiable in advance,
that is highly unlikely to have been acquired by random
chance alone”.%3) A complex goal might then be “one
that is unlikely to be reached by chance alone.” An ex-
ample of a complex goal might be winning a game of
chess. If an Al system receives input information rep-
resenting the positions of chess pieces on a chess board
and successfully outputs moves for Black that are better
than a random move generator, then it may be said to
have some degree of intelligence with respect to chess.
The better the moves, the more intelligent the system.
Likewise, if an Al system receives input information
representing all the world’s financial data and success-
fully outputs lucrative stock market purchases, then it
may be said to have some degree of intelligence with
respect to the stock market.

In addition to the complex goals of winning chess or
succeeding on the stock market, Al systems can also be
intelligent with respect to the goals of medicine. If an
AT system receives input of pixels representing a chest
x-ray and outputs correct diagnoses therefrom, the sys-
tem is intelligent with respect to interpreting chest x-
rays. If an Al system receives input representing vital
signs and bloodwork results and outputs accurate pre-
dictions of two-week mortality therefrom, the system is
intelligent with respect to predicting mortality. If an
AT system receives input representing history of pre-
senting illness, physical exam findings, and laboratory
data, and outputs a correct diagnosis therefrom, the
system is intelligent with respect to diagnostics.

In their capacity for modeling and transforming
information about the world, computers may succeed
with respect to a complex goal, medical or otherwise,
and thus achieve intelligence.

2.4 Machine learning to achieve artificial intelli-
gence

We have seen that a computational system will be desig-
nated as AT if it has the proper algorithms to transform
information in a way that is of benefit towards a com-
plex goal. But where do these intelligent algorithms
come from? Early approaches to Al entailed manually
inputting pre-determined rules that would enable in-
telligent computation.' However, recent successful ap-
proaches to achieving Al mostly capitalize on machine
learning principles. In machine learning, a computa-
tional algorithm is designed in a way that allows it
to acquire intelligent behaviour — essentially, to learn.
Compared to manually inputting putatively intelligent
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algorithms, machine learning has generally been a more
efficient approach to achieving AI. A popular and effec-
tive form of machine learning is deep learning. Many
applications of Al in medicine are Als that are the prod-
uct of deep learning. Deep learning algorithms excel at
working with complex information, uncovering useful
patterns hidden within the data. Yoshua Bengio of the
Université de Montréal recently gave the following de-
scription: >4

“Deep learning algorithms seek to exploit
the unknown structure in the input distri-
bution in order to discover good representa-
tions, often at multiple levels, with higher-
level learned features defined in terms of
lower-level features.”

Deep learning systems are intelligent with respect
to the complex goal of generating good representations
of complex data. A “good representation” is one that
closely maps the topography of the input data, even
when the topography is very complex. Good represen-
tation tames the complexity of the input data, allowing
useful patterns to be discovered in the data, and al-
lowing the system’s output to be relatively simple and
easy to work with, yet faithfully representing the origi-
nal complex input data. In taming complexity to arrive
at simple outputs, the system may acquire intelligence
with respect to certain goals pertaining to the complex
input information it received.

Deep learning generally occurs in neural networks,
a computational strategy modelled after biological
brains, in which information is passed through several
successive layers of computational “neurons”, with each
neuron transforming its information via a function. The
first layer of neurons receives the input data, gener-
ally representing the data exactly as received, with the
number of neurons in the first layer usually in a one-
to-one ratio with the number of variables in the input
data (e.g. in image classification, this may be a one-
to-one neuron-to-pixel ratio). Beyond that, informa-
tion is passed to a smaller number of neurons at each
successive layer, each layer performing computations,
mapping “features” of the data as it passes through. A
given layer processes in parallel; successive layers pro-
cess in series. These feature maps pass through layers
until ultimately, in the final layer of neurons, the sys-
tem outputs a final pattern of information. That is
the general scheme, but some neural networks employ
more complicated connectomes. For example, a convo-
lutional network generates successively smaller layers
until it arrives at a small enough subset to output a
result. For excellent comprehensive review of neural
networks, please see LeCun et al. 2015.55

In general, deep learning systems refine their repre-
sentations on “training sets” of data, datasets in which
all outputs are already known and given to the sys-
tem. (For example, a deep learning system for classify-
ing images as “cat” versus “dog” will be trained on a
large number of images of cats and dogs, both labelled
as such. These labels are the “ground truths” of the
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training stage.) The system then moves to a “valida-
tion set”, in which the deep learning system creators
know the output, but the system does not. This step
verifies the system’s ability to output a correct result
within some satisfactory margin of error. Finally, the
system graduates to encounter the “test set” — the
data of true interest, where the output results are un-
known to both the system and its creators.

How do deep learning systems learn to adopt good
representations? During training, in order to suc-
cessfully transform input information into the desired
(known) output information, individual neurons are
empowered to adjust the functions they implement via
a sophisticated mathematical technique known as back-
propagation. Backpropagation achieves automatic er-
ror correction by moving backwards through the deep
learning algorithm to adjust the system parameters to
best suit the use-case. This technique essentially re-
verse engineers how to represent the input data across
layers so as to ultimately reach the desired (known) out-
put. Returning to the example of classifying images as
cat versus dog, such a deep learning system would re-
ceive input of pixels representing cats or dogs, and from
these pixelated inputs, would be tasked with generat-
ing one of two output states: one representing “cat”,
the other representing “dog”. In training, pixelated
cat images (input) are paired with the known labelled
output “cat”. By backpropagation, the deep learning
system is slowly taught to refine its representation of
cat pixels such that, with increasing success, cat pixels
will flow through layers of computation in such a way
that ultimately and naturally leads to the output ”cat”
(and likewise for dogs and dog pixels). In this way,
deep learning systems are designed to learn from the
data themselves, thus they are well-suited to complex
information.

The above training framework, in which training
set materials are labelled with ground truths, is known
as supervised learning. The counterpart to supervised
learning is unsupervised learning, in which the deep
learning system is not provided with ground truth
outputs to serve as desired endpoints. Perhaps sur-
prisingly, even without supervised human guidance,
well-designed deep learning systems can achieve very
good representations of complex data, reaching high
levels of competence in performing challenging feats.
For example, in 2017, AlphaGo Zero learned to play
Go after starting as a “blank slate” without any human
data or human knowledge.8 The system did not receive
ground truth labels constituting winning strategies,
high score optimization, or other direct supervision; it
was only provided with the rules of the game. Learn-
ing only from unsupervised iterated self-play, AlphaGo
Zero went on to become the top Go player in the world,
better than any human player, and defeating the previ-
ous reigning-champion Al system by a score of 100-0.8
As deep learning systems with greater and greater
learning proficiency are engineered, the complexity of
problems they can solve — with minimal subsequent
human input — may increase to tremendous heights.
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2.5 Advantages of intelligent computers

We have defined an Al system as any computational
system that transforms information in such a way as
to be of use towards a complex goal. Various Al sys-
tems collectively allow at least three great general ad-
vantages to their users. First, Al may tend to achieve
superhuman proficiency at certain types of information
processing, such as implementing mathematical trans-
formations quickly and reliably (as in a pocket calcu-
lator). For such tasks, a computer can function as an
external cognitive prosthetic device. The scope of this
advantage is widened in modern electronic computers,
which can perform wide-ranging tasks quickly and reli-
ably.

Second, by modelling the outside world (or a por-
tion thereof), computers can provide valuable predic-
tions about likely future events in the modelled sys-
tem, such as NASA’s EO-1 satellite presciently alerting
human researchers of natural events before they them-
selves detected anything.®” Predictive power of com-
putational models has led to their widespread adop-
tion in other fields such as geology (predicting earth-
quakes)“® and space exploration (trajectory and pay-
load optimizations)58.

Third, computational models themselves can be in-
teresting objects of study, especially those arising from
unsupervised deep learning methods, which may gener-
ate models that are conceptually divergent from human
knowledge and human-preprogrammed models. Thus,
the AI resulting from unsupervised deep learning sys-
tems can appear foreign and other-worldly to humans.
Moves made by AlphaGo Zero, the Go-winning Al gen-
erated by unsupervised machine learning algorithms,
were described by champion Go players as “alien” and
“from an alternate dimension”.%? Alien or not, to the
extent an Al system achieves real-world success, its
model likely contains representations of real-world vari-
ables and parameters that are of interest. Therefore,
in examining the model of Go within which AlphaGo
Zero derived its alien hyper-successful moves, a path of
new insight towards the game of Go may be charted.
Further, the above-mentioned EO-1 satellite AI, which
alerted human scientists of events of which they had
been up to then unaware, was also generated by unsu-
pervised machine learning approaches.®” In studying Al
models such as these, we may gain new understandings
of the modelled systems themselves.

The extent to which the advantages of Al will be
useful in medicine depends on the extent to which that
which is useful about medicine can be abstracted in
terms of information and its transformations. Sec-
tion 3 will briefly consider the intersection between the
transformation of information and the complex goals
of healthcare.

3. Information processing is central to
clinical medicine

AT transforms information in ways deemed intelligent
with respect to a complex goal. To what extent does
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this pertain to medicine?

All medicine deals with information about a pa-
tient’s body. From diagnosing a disease, to recommend-
ing a medication, to forecasting the likelihood of a par-
ticular outcome within the next ten years, most of what
physicians do relates to an abstract information state of
their patients’ bodies. Ultimately, all useful medicine is
useful only in so far as it relates to information about
patients’ bodies. Put the other way round, there may
be little use in a physician whose medical advisements
do not correspond to any information about his or her
patients’ bodies.

Certain aspects of medicine such as laboratory in-
vestigations, diagnostic imaging studies, and electro-
physiological studies deal directly and overtly with bod-
ily information. Referring specifically to radiologists
and pathologists, Jha and Topol went as far as to coin
the term ”information specialist”, writing: 5°

The primary purpose of radiologists is the
provision of medical information; the im-
age is only a means to information. Ra-
diologists are more aptly considered “in-
formation specialists” specializing in med-
ical imaging. This is similar to patholo-
gists, who are also information specialists.
Pathologists and radiologists are fundamen-
tally similar because both extract medical
information from images.

We propose that, in a broader and more abstract
sense, all physicians are information specialists. Across
medical disciplines, it may be argued that the value
of physicians is to receive complex input information,
process and sort it into patterns that are meaning-
ful and actionable, and prescribe an appropriate ac-
tion on the patient’s behalf. Jha and Topol’s informa-
tion specialists provide the clearest examples — a radi-
ologist transforms two-dimensional pixelated greyscale
information into a radiographic diagnosis; a patholo-
gist transforms complex microscopic histological infor-
mation into a pathologic diagnosis. But much else of
what physicians do also relates to transforming infor-
mation. A typical clinical physician receives complex
input — history of entrance complaint, physical exam-
ination findings, current medications, laboratory find-
ings, other investigative findings — recognizes patterns
amidst the complexity, and thereby produces compar-
atively simple outputs such as diagnoses, risk assess-
ments, and prescriptions. This scenario can be mod-
elled as information flowing through the physician and
emerging transformed. There is no obvious reason why
a model accomplishing an identical transformation of
information cannot be programmed into a modern elec-
tronic computer. (Given the substrate-independence of
information and computation, this will be possible even
with modern electronic computers using computational
strategies that are dissimilar to the activities of the
brains of human physician.) But beyond merely mod-
elling such a transformation of information performed
in vivo by a human physician, is it conceivable that,
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provided with sufficient memory and processing power,
a well-designed deep learning neural network could be
trained to accomplish a large set of similar such trans-
formations, much like a physician, for a large set of
incoming potential patients? This would be an ex-
traordinarily challenging feat; nonetheless, we cannot
identify a law of physics or principle of computer sci-
ence that would preclude this possibility. As we will
see in Section 4, many pieces of the above scenario —
interpreting laboratory findings, interpreting diagnos-
tic imaging, interpreting broad clinical data as stored
in electronic medical records (EMRs), etc. — have al-
ready been captured by AI models. Thus, it appears
that physicians and AT alike can bring their competen-
cies to bear on the same problems within medicine. In
this general sense, physicians and Al may undergo a
"meeting of minds”.

Interestingly, research indicates that physician diag-
nostic facility depends on pattern recognition to a far
greater extent than it depends on systematic reason-
ing from first principles.®’ Thus, both physicians and
certain Al systems such as deep learning neural net-
works share the common feature of undergoing training
on large sets of data to hone their pattern recognition
abilities. In the case of physicians, data comes in the
form of patients, both real (in hospital) and hypothet-
ical (on examinations, in study materials, and human
actors serving as standardized patients). Whatever pat-
terns are recognized by physicians can likely be recog-
nized by Al too. Additionally, as discussed above in
Sections 2.4 and 2.5, certain Al systems (in particu-
lar, those utilizing unsupervised machine learning) ex-
cel at uncovering hidden patterns. We can likely expect
such systems to uncover new patterns hidden in medi-
cal information, which may have exciting implications
for the future of medical knowledge. This possibility is
explored further in Section 4.3.

So far we have focused heavily on the scientific as-
pects of medicine, discussing the extent to which these
can be modelled. Narrative, humanistic, artistic as-
pects of medicine must be considered separately. We
leave this topic as a future direction for further discus-
sion elsewhere.

4. Al and physicians:
minds?

We have seen that Al and physicians share certain com-
monalities. Al transforms information in ways that
are intelligent; doctors transform medical information
in ways that are intelligent. Medical information can
be abstractly modelled and therefore instantiated into
computers, where it can easily be made available to
AT systems for transformation. Therefore, from first
principles, we should expect that Al can intelligently
transform medical information. Further, both physi-
cians and deep learning systems achieve their utility via
a heavy reliance on pattern recognition. Deep learning,
and Al generally, are active areas of research. Sophis-
ticated machine learning algorithms of the near future,
able to self-learn from staggeringly complex data and

a meeting of
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programmed into universal computers with large stor-
age capacity and processing power, may have no near
limit to the competence they can achieve. Taken collec-
tively, these considerations persuade us that the poten-
tial for Al to succeed in the future of medicine is likely
broad and extensive.

The differences between AI and physicians will be
equally important as similarities. Certain Al systems
are likely to form representations based on novel pat-
tern extraction and interpretation, thus diverging from
human physician cognition and models. Additionally,
differences in the characteristics of models used by
physicians and AI may instate accordingly different
competencies across medical use cases, which may in
fact be complementary. For example, AI's pixel-by-
pixel analysis of diagnostic imaging studies will have
higher acuity for adjacent shades of grey,'® comple-
mentary to human physicians’ generally superior capa-
bilities of lateral thinking and broad differential diag-
noses. 2:63 Thus, physicians and Al may be well-suited
to augment one another in collaborative clinical prac-
tice. Collaborating to interpret diagnostic investiga-
tions and offer clinical predictions is a kind of “meeting
of minds” that is already underway. Sections 4.1 and
4.2 further explore possibilities in this area.

Further, in as much as AI’s models of medicine are
conceptually different but nonetheless accurate and use-
ful, examining the details of the AT models may chart a
course to new insight about the body. Al systems may
float free of historical biases and schemas in medicine —
for example, if they begin as an agnostic deep-learning
neural network, as did AlphaGo Zero. If this is the
case, examining the representational models employed
by medical Al systems may reveal new insights about
intra-body phenomena, leading the way to paradigm
shifts in medical knowledge and allowing discontinuous,
transformative, and rapid advancement. The possibil-
ity that physicians may learn about medicine from Al is
a second way in which a “meeting of minds” may occur.
This possibility is further explored in section 4.3

The intersection of Al and physician competence is
clearly complex and multi-faceted. Thus, the question
“what to do with medical AI that is as good or better
than doctors?” cannot be answered without specifically
considering what medical Al can in fact accomplish.
Having advanced a detailed physical and philosophical
argument in Sections 2 and 3 that the future reach of
AT in medicine may be quite broad, we will now turn
attention to discussing the current possible reach of Al
in medicine, as demonstrated by recent active research.

4.1 AI can collaborate with physicians in the in-
formation specialties

Certain tasks in medicine have received plentiful atten-
tion of early Al research. Given specific competence of
certain Al systems in recognizing and classifying im-
ages,*” a natural early step for Al in medicine has been
recognizing and classifying diagnostic images. The ben-
efits of accurate image classification will be significant.

For example, if Al can successfully classify diagnostic
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imaging studies, it may be able to serve as a cognitive
prosthetic for radiologists, leading to gains in accuracy
and efficiency. Alternatively, in geographic regions un-
derserved by radiologists, some Al systems may be ac-
curate enough to act in lieu of radiologists. The authors
of a study reporting a deep learning system for classi-
fying pulmonary tuberculosis on chest x-ray noted that
such a system could be of particular value given a rela-
tive paucity of radiologists in certain TB-endemic areas
of the world.®* Many Al systems have demonstrated
competency in transforming medical imaging informa-
tion, pathological information, and electrophysiological
information into accurate diagnostic and predictive in-
formation. We will consider representative examples in
the information specialties of Al systems with capabil-
ities to augment or enhance the abilities of physicians.

Chest x-ray is a widely-used imaging modality that
has received a plenitude of Al research attention early
on. Various Al systems have demonstrated the ability
to perform similarly to radiologists at interpreting chest
x-rays. In a recent notable study, a deep learning sys-
tem was trained to detect fourteen different pathologies
as demonstrated on chest x-ray.% Following training
on over 100,000 disease-labelled chest-x-rays, the sys-
tem was found to perform radiologist-level or better on
classifying eleven of fourteen pathologies. Other work
has also specifically demonstrated efficacy of an Al ra-
diologist collaboration. In a multi-centre collaboration
based out of South Korea which developed a deep learn-
ing system for classifying chest x-rays with varying de-
grees of accuracy for various pathologies; when assisted
by the deep learning system, radiologists benefited from
a significant increase in sensitivity.63 The authors sug-
gested this may be due to the Al alerting radiologists
to the possibility of the presence of major thoracic dis-
ease, and to localizing the area of possible lesions to
mark spots needing further attention by radiologists. %3
Researchers at Thomas Jefferson University created a
radiologist-Al collaboration achieving 97.3% sensitivity
and 100% specificity in classifying pulmonary tubercu-
losis on chest x-ray. 4 Al-radiologist collaborations may
be a natural fit due to Al’s pixel-by-pixel analysis al-
lowing computation thorough approach greater acuity
for adjacent shades of grey,' but relative inferiority at
lateral thinking62 and generating a differential diagno-
sis. 63

Beyond chest x-rays, deep learning systems have
demonstrated early success on other imaging studies
as well. A collaboration based in Australia recently re-
ported a deep learning system that, following training
and validation on nearly 50,000 frontal pelvis x-rays,
achieved 97% accuracy in diagnosing hip fractures.%®
Research conducted in Budapest demonstrates a deep
learning system for diagnosis breast cancer on mam-
mography that achieved 90% sensitivity and 70% speci-
ficity (a performance considered to be on par with some
physicians, but not necessarily as accurate as special-
ized radiologists).%” Researchers at the University of
California developed a deep learning system for classify-
ing echocardiogram views that achieved 97.8% accuracy
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of classification, and when tested against electrocar-
diographers on single low-resolution images, achieved
91.7% accuracy versus the electrocardiographers’ 70.2-
84.0% accuracy.® Notably, the US’s FDA has already
approved Al algorithms for interpreting certain di-
agnostic imaging studies,?° including analyzing heart
hemodynamics via cardiac MR images, '® interpreting
hyperacute stroke CT brain images,'” and evaluating
liver and lung lesions evident on MR and CT images. '°

Outside diagnostic imaging, image classifying Al
systems have also achieved success in histopathologi-
cal examinations. Cancer is a common indication for
histopathological investigation, thus many studies have
concentrated here. Google recently reported the devel-
opment of “LYmph Node Assistant” (LYNA), which
outperformed pathologists in diagnosing metastatic
breast cancer from pathological samples,% and, when
applied to assist pathologists, made their job of diag-
nosing breast cancer “easier”.” Google also recently
reported a deep-learning system which outperformed
general pathologists at grading prostate cancer, achiev-
ing an overall accuracy of 70% compared the patholo-
gists’ average accuracy of 61%.7!

Image classification techniques and other deep
learning systems may also be of use in interpreting “im-
ages” of electrophysiologic tracings such as ECGs and
EEGs. Regarding ECG, evidence demonstrates utility
of Al to interpret ECGs to identify arrhythmias and
cardiac contractile dysfunction with approximately the
same accuracy as cardiologists. 7>7%74 Regarding EEG,
in long-term ambulatory EEG-monitored patients, Al
may be able to predict seizure onset. A recent study
reports a deep learning system achieving seizure pre-
diction accuracy of 99.6% with a prediction time of one
hour ore-ictal, and a low false alarm rate of one false
alarm generated every 250 hours.” Applied to invasive
intracranial EEG, deep learning systems may have some
utility in helping classify seizure onset zone.”® Addi-
tionally, there is promising evidence regarding the util-
ity of Al systems to monitor against seizures in the in-
tensive care unit, with accuracy approximately as good
as electroencephalographers, in less time needed to re-
view the EEGs. ™"

These above works demonstrate Al performing cer-
tain tasks at levels of competence similar to radi-
ologists, pathologists, and electrophysiologists. On
these narrow, information-heavy tasks, the “meeting of
minds” has already begun. Al in cooperation with radi-
ologists may improve sensitivity and accuracy, %4 and
may provide similar such advantages to pathologists. 7
In collaboration with information specialists, Al could
take many roles, perhaps screening all images and alert-
ing physicians to the likely presence of major disease,
or perhaps providing a useful consultant second opin-
ion on an as-needed basis. As noted, Al may see things
differently than humans, conferring an advantage in the
spirit of “two sets of eyes are better than one”.

Faster interpretation times achieved by Al will be
of specific use as well. The FDA-approved algorithm
for interpreting hyperacute stroke CT brain images au-
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tomatically summons an interventionist if a large vessel
occlusion is detected (since large vessel occlusions may
be amenable to thrombectomy).® A human radiologist
also interprets the CT images, however, the Al typi-
cally finishes first, allowing faster access to morbidity-
reducing interventional treatment. AI systems in the
information specialties may soon gain sufficient compe-
tence to act autonomously in broader clinical settings,
which will be highly advantageous for regions under-
served by radiologists and other information specialist
physicians.

AT interpretative assistants also hold certain other
advantages over their human physician collaborators,
such as being present and available on hospital networks
24/7 without the need for rests or breaks. Further,
whereas physician thoroughness may unfortunately de-
cline throughout the day, "®7® Al systems perform con-
sistently at their given levels of accuracy. In fact, if
programmed to continue learning from incoming con-
temporaneous patients, an Al system’s level of accuracy
will likely increase over time.

One downside of incorporating AI interpretative
assistants is that physicians may come to depend too
heavily on the Al in situations where it is inappropri-
ate. Please see Section 6 for further discussion of this
possibility, and discussion of other limitations of Al’s
entrance into healthcare.

4.2 Al can predict important clinical outcomes
from various sources

In the information specialties, Al begins with a narrow
model of the patient, a model that is already contained
in the investigative study. However, outside the infor-
mation specialties, medically-oriented Al systems have
tended to intake broader, various data sources, forming
broader models of the patient (rather than working ex-
clusively with a chest x-ray-generated model of the tho-
rax, for example). Abstract models resulting from these
broad inputs have proved useful for prediction. Similar
to the pixel-by-pixel approach to medical image inter-
pretation, Al systems in broader aspects of medicine
can likewise analyze data iota-by-iota. EMRs are one
excellent source of such broad data. A recent survey
found that 80.5% of US hospitals were using at least
a basic EMR system.®® AI can roam freely through a
patient’s EMR, automatically detecting patterns and
predicting things with a high degree of accuracy. For
example, a 2013 study reported a deep learning system
which could sift through patients’ EMRs and automat-
ically predict diagnoses of rheumatoid arthritis with
moderate accuracy.3® We will consider representative
further examples of the power of Al to predict diverse
clinical outcomes from transformations of broad, often
routine clinical information.

A recent international collaboration used multiple
machine learning strategies (including some deep learn-
ing strategies) to construct an “early warning system”
for predicting mortality amongst inpatients.?! The sys-
tem extracted patterns amongst variables including cer-
tain diagnoses such as congestive heart failure and acute
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cerebrovascular disease, and in patients’ presentation
to care histories in the months prior to admission. The
system was tested prospectively on a set of 11,765 pa-
tients, of whom 255 passed away. Of these, for the 69
patients (13.3%) who had been at the highest risk of
passing away, the Al system accurately predicted their
death 40.8 hours in advance.®! Similar to the notion
that an AI system for chest x-ray could serve to no-
tify radiologists of the possibility of major thoracic dis-
ease,% the study authors of the early warning system
for mortality noted that such a system could be of use
to automatically notify physicians and other healthcare
professionals whenever a patient exceeded a given high-
risk threshold.®!

Other work has focused on what important out-
comes can be predicted from hidden patterns in rou-
tine lab data. Recent work out of the Swedish Karolin-
ska Institutet applied various machine learning models
to routine laboratory data in effort to predict outcome
following traumatic brain injury.®? Study results iden-
tified increased serum creatinine, serum glucose, and
plasma osmolarity, as well as decreased serum albumin,
as factors predicting a worse outcome. Other work con-
ducted out of the University of Nottingham exposed
machine learning algorithms to routine lab data for the
purpose of predicting adverse cardiovascular events.3”
Compared against standard-of-care American Cardiol-
ogy guidelines in a retrospective test set of 378,256 pa-
tients, the machine learning system predicted 355 more
events of cardiovascular disease than did current stan-
dard of care.?” Greater predictive accuracy will be in-
valuable for forecasting important outcomes such as re-
covery from traumatic brain injury and risk of myocar-
dial infarction.

In addition to predicting event outcomes, routine
laboratory data may also be useful for diagnosing dis-
ease. Referencing previous work demonstrating un-
derdiagnoses of primary hyperparathyroidism,® Som-
nay et al. devised a machine learning system based
on routinely available clinical data that could diag-
nose primary hyperparathyroidism with accuracy su-
perior to 95%.%% Similar to other works on early
warning systems81 and alerts of possible major dis-
ease,% Somnay et al. suggested that their primary
hyperparathyroidism-detecting system could be incor-
porated into EMR software to create a “best practice
alert” recommending parathyroid work-up in high-risk
patients. 84

Other work has applied Al to predict response to
medications. A US multicenter collaboration used a
variety of machine learning approaches to make treat-
ment recommendations for choice of antidepressant for
patients with major depressive disorder, identifying a
subset of patients expected to benefit from sertraline
therapy relative to placebo. This benefit was observed
in study results, although the sertraline-receiving pa-
tients who had been identified as optimally suited to
this treatment did not experience significantly differ-
ent outcomes from the other, less-optimally-suited pa-
tients receiving the same treatment.3> Beyond antide-
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pressants, other work employed a variety of machine
learning methods to predict optimal warfarin dose, a
challenging task due to its narrow therapeutic range.36
The AT in this study had some success, and the authors
concluded it could be of benefit in determining optimal
dosing, especially for patients needing low maintenance
doses. 36

This research collectively demonstrates competency
of various Al systems in predicting diverse clinical out-
comes including mortality, adverse events, diagnosis
of disease, and response to treatment. In some cases,
AT prediction algorithms may be superior to existing
clinical prediction guidelines, such as the widely used
Framingham risk score.3” As suggested by some, Al
prediction algorithms could run alongside physicians
and flash warnings when deemed relevant. In as much
as competency of such systems has been demonstrated
and is likely to increase, healthcare policymakers and
physicians should be correspondingly enthusiastic to
obtain access to Al predictive powers. Al’s predictions
may arise from different variables than from clinicians,
and may predict different things than physicians, thus,
rather than necessarily usurp physicians as lead pre-
dictors and decision-makers, Al warning systems may
more likely constitute a useful and complementary sec-
ond opinion. With incorporation into healthcare and
exposure to high volumes of patient data, predictive
machine learning algorithms will attain greater and
greater accuracies. Such predictive systems may also
help close the gap in care existing between areas un-
derserved by physicians (such as Northern and remote
Canada, developing countries, etc.) compared to areas
with relatively abundant access to physicians. This will
be a highly important outcome, since whereas informa-
tion specialty tasks such as interpretation of diagnostic
imaging can often be outsourced to a nearby tertiary
centre, the more intimate tasks of clinical prediction,
such as “which patients on my ward are at high risk
of two-week mortality?” cannot be systematically out-
sourced in the same way. As Al systems gain increasing
predictive competency, a desire for utilizing this com-
petency should compel physicians and policymakers to
consider incorporating predictive Al algorithms into
healthcare.

4.3 Could physicians working alongside AI gain
new insights into physiology and pathophysiol-
ogy?

In receiving broad information representing a patient,
such as by roaming through their EMR, Al generates
a novel model of the patient that is correspondingly
broader than the model contained in a diagnostic imag-
ing study. New, Al-generated models will be interesting
objects of study. In particular, models resulting from
unsupervised machine learning algorithms are likely to
be highly creative relative to contemporaneous human-
designed models. But regardless of how an AI model
is generated, physicians and policymakers will be be-
hooved to understand its salient features. If the medical
community is to sanction the adoption of a particular
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AT system, it will be important for purposes of safety,
potential debugging, and to understand the functioning
of the system’s model to ensure its robustness. As dis-
cussed above, in examining the models of Al, we may
be led to new insights about the body.

AT medical systems may lead to new insights in
other ways. AlI’s high-powered pixel-by-pixel analy-
sis allows it see certain things that cannot be seen by
physicians, thus achieving access to whole new realms
of data. Within diagnostic imaging, the field of “ra-
diomics” is emerging, which focuses on mining im-
ages for such hidden data.?® One study demonstrated
that small changes in serum potassium (as small as
0.2 mEq/L, even within the normal reference range)
manifested quantifiable changes on ECG that were de-
tectable by AI interpretation but not by human re-
view.®8 By applying deep learning, it has been discov-
ered that retinal fundoscopy images contain informa-
tion to robustly predict a person’s age, gender, blood
pressure, smoking status, diabetes control, and risk
of adverse cardiovascular events.8” MR images of low-
grade gliomas contain information to predict deletion
of chromosomal arms 1p/19q (an important prognos-
ticator for treatment response). Using only MR im-
ages, deep learning system acquired this knowledge
with 93.3% sensitivity, 82.22% specificity, and 87.7%
accuracy.®® Perhaps most interestingly, fluorine 18 flu-
orodeoxyglucose PET images of the brain contain in-
formation that can be used to predict diagnosis of
Alzheimer’s disease 75.8 months prior to the time of
eventual diagnosis with 82% specificity at 100% sen-
sitivity.8? Interestingly, when this model analyzed via
saliency mapping to determine which features it had ex-
tracted from the data to influence its predictions, it was
found that rather than relying on a specific brain loca-
tion or regions that could serve as anatomic biomark-
ers, the system appeared to utilize data from the whole
brain to inform its predictions. (The system did con-
sider certain areas to be more influential, with some
influential regions corresponding to brain regions im-
plicated in present understandings of Alzheimer’s dis-
ease.) By virtue of AI’s ability to see new things, in-
cluding by pixel-by-pixel analysis, and by virtue of the
power of machine learning algorithms to diverge from
human understandings, medical models in Al systems
may lead us to new explanations of intra-body phenom-
ena, explanations that are divergent from an otherwise
evolutionary, ad hoc mode of advancement of medical
knowledge. 9

A further distinct and intriguing possibility is
that AI mathematical model parameters may possi-
bly correspond to actual biological parameters within
the body.  “Theory-driven” efforts in the emerg-
ing field of computational psychiatry seek to gener-
ate computation models with parameters correspond-
ing to brain neural circuitry parameters.®’ To this
end, “biophysically-realistic neural-network models” ?2
have captured specific, exquisite neurotransmitter dis-
ruption caused by ketamine use;? detailed models of
particular neuroanatomical structures such as cortico-
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striato-thalamic loops**%> have demonstrated explana-
tory power for various neurological and psychiatric
diseases. 929697 Whereas computational psychiatry ap-
proaches address the brain as an algorithm to model,
this framework may map onto other organs as well.
Can the pituitary gland be modelled as an algorithm
for transforming serum concentrations of certain hor-
mones, with detailed mathematical model parameters
corresponding to release stimuli for the various pitu-
itary hormones? Can a kidney be modelled as a multi-
layered algorithm for filtering blood, with model pa-
rameters corresponding actions of individual nephrons,
or even to arrays of particular ion pumps along individ-
ual nephrons? Indeed, a detailed computational model
of nephron transportation of water and solutes was pub-
lished in February, 2019.%® Perhaps computational en-
docrinology and computation nephrology await us as
future endpoints. For now, progress is likely to move in
the direction of gradually-increasing extent of accurate
modelling.

However, on the opposite end of the spectrum of
model-body correspondence, it is conceivable that cer-
tain AI predictive models may have nothing to do with
bodily phenomena. AI systems could hypothetically
base their predictions on emergent “data” and patterns
that exist only inside the model, uncorrelated to any
process in or affecting the original outside system (the
patient). Such predictions could even hypothetically
still be robust, however, they would run the risk of
being “fooled” by confounding data.?® However, as
AT predictive models achieve better and better com-
petence, its feature maps and pattern extractions will
have to be more and more consonant with the actual
body itself (assuming an efficiency incentive conferred
by constraints in power supply and computational stor-
age). Thus, most likely, the parameters within the pre-
dictive models will correspond more and more closely
to some abstract informational state about the body.
Perhaps, in the extreme, something like a unified com-
putational biology can be approached. As this field
progresses, investigating model parameters to under-
stand the salient bodily features being mapped will be
of increasing importance for purposes of safety, debug-
ging, and advancement of knowledge.

5. Limits and obstacles to physician aug-
mentation by Al

We have explored various ways in which Al systems and
physician competence will intersect. Healthcare should
be keen to capture the value of AI, which will include
integration of physician-Al collaborations, and, in time,
perhaps attaining some reliance on autonomous Al that
is uncoupled from physician oversight. However, in in-
corporating AT into healthcare, certain difficulties must
be faced.

First, physician-Al collaboration will be limited by
the rate and extent of technological advancement in
medically-purposed Al systems. While some promising
systems already exist, and increasing resources are be-
ing devoted to AI and specifically Al in healthcare, 1914
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much work still remains. As part of this work, we must
ascertain how best to harness and implement the infor-
mation provided by medical Al. (Some have noted that
medicine may in general benefit from greater emphasis
on its “effector arm”—1i.e., knowing when and how to act
on information that is available. %) Second, Al systems
appearing competent in retrospective validation trials
may require further and more extensive prospective val-
idation on sets of real, contemporaneous patients in-
coming to hospital facilities. This will likely be a nec-
essary step to achieve sufficient trust in these systems,
and to foster certainty in their real-world competence.
Third, and also relating to the matter of sufficient trust,
is the “black box” posed by some Al systems. What
happens in the deep interior layers of a neural network?
What patterns are being recognized and mapped? Abil-
ity of an Al system to account for the informational,
pattern-recognized basis of its output will allow greater
trust in the system (if in fact the basis appears rea-
sonable), and will help to guard against oversights via
human verification at the level of pattern extraction,
data mapping, etc. Ironically, it is conceivable that Al
systems may be applied to help us understand other Al
systems — essentially, the behaviour of a deep learning
system could serve as the input information to another
deep learning system. Fourth, machine learning tech-
niques in general may fail to imbue human-level ability
to reason effectively in novel circumstances, given that
they will tend to be trained on the data of the past. %!
With each new patient encounter presenting a poten-
tially novel circumstance, this limitation alone may en-
sure a role for human physicians in clinical medicine for
the foreseeable future. Fifth, due to physician discom-
fort with risk and uncertainty, imperfect “assistant” Al
systems could come to be inappropriately relied upon
for clinical decision making. Physician dependence on
AT systems must scale with competence of the given
system, and Al systems validated for assistive function
must not be spuriously promoted to leadership function
over and above physician judgement.

Some have also suggested that current machine
learning algorithms may be overhyped.!0? Relatedly,
certain leading Al researchers are pursuing more ad-
vanced modes of machine learning. Neural network pio-
neer Geoffrey Hinton (who has been called the Einstein
of AT)12 has begun working on a new type of network
called “capsule network” which may prove allow ma-
chine learning techniques of even greater power than
current neural network technology. 103

Additional concerns surrounding Al in healthcare
include those of patient privacy. Machine learning al-
gorithms generally require a vast amount of training
data to refine interpretations and achieve competency.
For machine learning in healthcare, the requisite data
will tend to be confidential patient data, raising the
question of how to expose machine learning algorithms
to sufficient volumes of training data without violat-
ing patient privacy. Fortunately, sophisticated compu-
tational techniques are being devised to overcome this
challenge, anonymizing patient data and providing “for-
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mal, mathematical guarantees around privacy preserva-
tion.” 194 Concern has been raised that certain modern
anonymization techniques, such as those used in 2018
for deidentifying information obtained from wearable
devices, may be inadequate to ensure privacy. % Mov-
ing forward, it will be crucial to ensure privacy of any
patient with medical information passing through an
AT algorithm.

Lastly, there is the concern that, to whatever extent
AT is relied upon in healthcare — especially without
physician oversight — a computer “crash” affecting the
AT would be catastrophic. Existing EMRs do occa-
sionally crash.'%® Redundant safety back-up measures
for healthcare technology must scale to be increasingly
robust alongside increasing reliance on Al

6. Limitations of this paper

This paper has focused on how Al will affect the future
of medicine by intersecting with physician competence.
We have not discussed the arrival of Al competence
in surgical medicine, nor in pre-clinical biomedicine;
unsurprisingly, the possible capabilities of Al in these
fields are also evident. Robotic surgical assistants are
already in widespread use worldwide. %7 Despite gains
in precision and accuracy, their use generally does not
significantly alter outcomes; % however, emerging data
demonstrates potential for outcome improvement. %9
It is believed that implementing touch sensors also will
help advance their effectiveness, and such developments
are now forthcoming. ' Overall, it has been proposed
that “clinically feasible” autonomous surgical robots
will exist before the end of this century.'!! Regarding
pre-clinical biomedicine, for recent excellent detailed
reviews, see Angermeuller et al. 2016''2 and Ching et
al. 2018.%°

7. Conclusion

The continued advancement of medical Al will have
a tremendous and complex impact on the future of
medicine and the future of human life generally. If com-
petence of medical Al systems continues to progress,
the best-performing clinical executive systems will, at
some future point, almost certainly be physician-AI col-
laborations. Moving forward, healthcare will be in-
creasingly confronted by the question of what to do
with AI medical systems that rival physician compe-
tence. The “meeting of minds” between physicians and
AT has already begun, with AI systems deployed into
healthcare in numerous countries worldwide. Given the
potential of AI systems to enhance accuracy and im-
prove outcomes in manifold aspects of medicine, and to
enhance the standard of care in physician-underserved
regions, we may be wise from perspectives of benefi-
cence, non-maleficence, and justice to concentrate re-
sources on their development. Navigating the evolving,
dynamic intersection of physician and AI competence
will be crucial to capture benefits, mitigate risks, and
achieve optimal outcomes for patients. Time will tell
what will be the ultimate role of human physicians in
the future of medicine.
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